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Over the last decade or so, theoreticians and ex- 
perimentalists have developed a framework for un- 
derstanding the behavior of matter near critical points 
which promises to  encompass an amazing medley of 
phen0mena.l The mixing and unmixing of two liquids 
as temperature and composition are varied is one of 
these phenomena-one which is of particular interest 
to chemists. 

In thinking of liquid-liquid critical phenomena, i t  is 
useful to keep in mind the analogous liquid-gas critical 
phenomena. Figure l a  shows the phase diagram of a 
system of one component. By Gibb’s phase rule for one 
component, there is a pressure-volume-temperature 
surface (shown shaded) where one phase exists and a 
coexistence curve (shown dashed) along which two 
phases (a “gas” and a “liquid”) exist. As the tem- 
perature increases, the coexistence region narrows and 
the coexisting phases become more and more alike until, 
a t  the critical point, the two phases are indistin- 
guishable. Figure l b  shows the projection of the 
coexistence curve onto the TV plane; it is this projection 
which we will find convenient for our analogy with 
liquid-liquid critical phenomena. 

When another component is added, the phase rule 
tells us that an additional degree of freedom is gained. 
Thus, for a binary mixture a coexistence curve becomes 
a coexistence surface and a critical point becomes a line 
of critical points. Figure 2a shows a temperature- 
composition-pressure diagram for a binary liquid 
mixture with liquid-liquid immiscibility. We will be 
concerned here with constant pressure sections of this 
diagram, such as that shown in Figure 2b, which is 
analogous to Figure lb .  Below the critical point, the 
system consists of two coexisting liquid phases of 
different composition. As the temperature is raised, the 
two phases become more and more alike until, a t  the 
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critical point, the two liquid phases are indistin- 
guishable. 

The liquid-liquid critical solution point shown in 
Figure 2b has an upper critical solution temperature 
(UCST)-the mixture mixes a t  higher temperatures 
and unmixes at  lower temperatures. When the opposite 
happens-mixing at  lower temperatures and unmixing 
a t  higher temperatures-the associated critical point 
has a lower critical solution temperature (LCST). Both 
kinds of critical points can occur in the same system, 
forming a closed miscibility gap. As examples, the 
mixture aniline + cyclohexane has an UCST at 29.5 “C, 
triethylamine + water has a LCST a t  18.5 “C, and 
2,6-lutidine + water shows both an UCST at 231 “C and 
a LCST a t  34 0C.2 

Let us think about what is happening a t  a liquid- 
liquid phase transition. Consider a liquid mixture a t  
the critical composition and above its UCST: a ho- 
mogeneous mixture of one liquid phase (see Figure 2b). 
Suppose now that the temperature is lowered toward 
critical. Near the critical point, the two phases are very 
nearly identical, so it takes little energy for small regions 
of one phase or the other to form in the “homogeneous” 
liquid. The nearer the system is to the critical point, 
the larger these “fluctuations” become. Within mil- 
lidegrees of the critical point, the size of these fluc- 
tuation regions, termed the “correlation length” and 
denoted by E ,  becomes thousands of angstroms. In fact, 
the correlation length diverges toward infinity very close 
to the critical point. 

This divergence of the correlation length causes the 
intense light scattering near critical points known as 
“critical opalescence”. It has been found that many 
thermodynamic properties-compressibility, heat ca- 

(1) Reviews of critical phenomena in general can be found in: M. E. 
Fisher, Rep. Prog. Phys., 30, 615 (1967); P. Heller, ibid., 30, 731 (1967); 
L. P. Kadanoff, W. Gotze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. 
Palciauskas, M. Rayl, and J. Swift, Reu. Mod. Phys., 39,395 (1967); H. 
E. Stanley, “Introduction to Phase Transitions and Critical Phenomena”, 
Oxford University Press, New York, N.Y., 1971. 

(2! Liquid-liquid miscibility gaps have been catalogued by A. W. Francis 
in “Liquid-Liquid Equilibrium”, Interscience, New York, N.Y., 1963, and 
in “Critical Solution Temperatures”, American Chemical Society, 
Washington, D.C., 1961. 
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Table X 
Critical Exponents Describing Thermodynamic Anomaliesa - -- -*-_l_-l_---__----Î.--- 
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Figure 1. (a) Pressure-volume-temperature surface for a pure 
fluid. (b) Temperature-volume projection of a pure fluid PVT 
surface. 
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Figure 2. (a) Temperature-composition-pressure surface at  a 
liquid-liquid phase transition. (b) Constant pressure phase 
diagram for a liquid-liquid phase separation. The temperature 
and composition a t  the critical point are termed the critical 
temperature and critical composition, 

pacity, etc.-behave anomalously at  critical points. I t  
is t h e  postulate of  t he  modern theories of critical 
phenomena tha t  all t h e  peculiar behavior a1 critical 
points is traceable to the divergence of the correlation 

length. From this postulate have come very successful 
predictions of critical behavior fo r  a variety of typec 
o f  phase transitions. 

We can describe the thermodynamic anomalies near 
critical points by equations in which the divergence of 
a given property enters as a “critical exponent”. These 
exponents are defined in Table I both for liquid.-gas and 
for liquid-liquid  transition^.^^^ We use a reduced 
temperature t ,  E = IT, - TI/Tc, where T,  is the critical 
temperature. The “order parameter” is some quantity 
chosen as a measure of what is different about the two 
coexisting phases. As the phases become more and 
more alike, the order parameter gets smaller and 
smaller. The other quantities in the table are: 
ClJ 
C P  

CYPX 

AP 

APNA 

KX isothermal Compressibility 
( a ~ A / a p A ) p , T  

G (4  

heat capacity a t  constant volume 
heat capacity at  constant pressure and 

composition 
thermal expansion at  constant pressuye 

and composition 
difference in mass density of coexistjrig 

phases 
difference in number density of com- 

ponent A between coexisting phases 

derivative of composition with respect 
to chemical potent,ial for component 
A 

pair correlation function: probability of 
finding a molecule at a distance I’ from 
a given molecule 

d spatial dimensionality 
E correlation length 

Two aspects of these definitions of critical exponents 
must be emphasized. First, these definitions are valid 
close to the critical point and are not intended to apply 
over a large region. In order to describe behavior over 
an extended region, i t  will be necessary to add other 
terms in an expansion for each thermodynamic prop- 
erty, We must determine the range in which the ex- 
ponents have their limiting values by analyzing the data 
for various choices of range and for various numbers of 
terms in the expansions. 

Second, the choice of thermodynamic properties- 
variables-to use in these definitions is somewhat ar- 
bitrary. For example, it is possible to choose various 
variables or “order parameters” to describe the liq- 

(3) Liquid-liquid critical phenomena have been comprehensively 
reviewed by R. L. Scott, Ber. Bunsenges. Phys. Chem., 76,296 (1972), and 
in Spec. Period. Rep. Chem. Therrnodyn., 2, in press. See also B. Chu, 
J .  Stat. Phys., 6, 173 (1972), and Ber. Bunsenges. Phys. Clzem., 76, 202 
(1972). 

(4) Fluid critical phenomena in general have been reviewed by J. V. 
Sengers and J .  M. H. Levelt Sengers, Prog. Liquid Phys., 103--174 (1978). 
A “popular” exposition was given by A. L. Sengers, R. Hocken, and J. V. 
Sengers, Phys. Today, 30, 42 (1977). 
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Table I1 
Comparison of Experiment and Theory for Equilibrium Critical Exponents” 

experiment 
binary liquid mixtures 

theory 
nitroethane t 3- isobutyric acid t 

exponent R G ~  seriesC pure fluidsd methylpentane water 
CY (0.1098 t 0.0022) 0.125 i 0.020 (0.08-0.11) 0.12 * 0.06e 0.08-0.14h 

V 0.6300 i 0.008 0.638 + 0.002, (0.62-0.64) 0.625 * O.0Ogg 0.615 i 0.01@ 

P (0.325 * 0.001) 0.312 * 0.005 0.321-0.329 0.330 * 0.018f 0.328 t 0.004’ 
Y 1.2402 f 0.0009 1.250 + 0.003, 1.23-1.28 (1.241 * 0.023)g 1.24 t 0.05’ 

- 0.007 

- 0.008 

- 0.030) 
rl 0.0315 * 0.0024 (0.041 t 0.017, (0.0-0.05) 0.016 * 0.0219 (0.016 i 0.10) 

asymptotic e < e < 10-3-10-2 
range 

a Values in parentheses were calculated from the other exponent values using scaling relations. Experimental uncertainties 
are given as three standard deviations. Theoretical values refer to renormalization group (RG) methods and series estimates 
for lattice models. Le Guillou and Zinn-Justin, ref 11. 
e Greer and Hocken, ref 13. f Wims et al., ref 14. g Chang et al., ref 15. Greer, ref 17 .  

Domb, Camp, e t  al., ref 10. Hocken and Moldover, ref 12. 
Morrison and Knobler, ref 16. 

iChu et al., ref 18. 

uid-liquid coexistence curve, including the difference 
between coexisting phases in mole fraction of compo- 
nent A, AxA, or the difference in mass density, Ap. In 
some region close to the critical point, the exponent 
describing a given property should be the same re- 
gardless of the choice of variables. Some variables, 
however, can be expected to show the limiting behavior 
over a larger region than others and are therefore to be 
preferred. The effort has been to choose those variables 
which seem to give the simplest, most symmetric be- 
havior over the largest region of the phase diagram, 
while one is guided by the theories5 in that choice. 

The theoretical approach to the understanding of 
critical phenomena has developed a t  a fast pace over 
the last 10 years6 and reached a new plateau in 1971 in 
the renormalization group (RG) theory of Kenneth G. 
W i l ~ o n . ~  The RG theory is a truly statistical me- 
chanical theory of critical phenomena, which starts with 
a microscopic Hamiltonian for the system.s The theory 
then assumes that, close enough to a critical point, the 
correlation length becomes so large that the behavior 
of the system is independent of the choice of the length 
scale. Group operations are applied to find the cir- 
cumstances under which this scale invariance is ob- 
tained. The equations for these operations then contain 
a phenomenal amount of information about the critical 
behavior. 

The first result of the RG theory is that critical 
phenomena in isotropic systems can be grouped into 
classes-“universality classes”-which are determined, 
quite simply, by the spatial dimension, d ,  and the spin 
dimension, D. The “spin dimension” is, in the language 
of magnets, the dimension of a vector representing the 
possible values of the spin. As a magnetic spin can 
either be “up” or “down”, a mixture molecule can either 
be “A” or “B”. Thus, for liquid-gas critical points and 

Chu et al., ref 19. 

(5) J.  J.  Rehr and N. D. Mermin, Phys. Reu. A, 8,  472 (1973); R. B. 
Griffiths and J. C. Wheeler, ibid., 2, 1047 (1970). 

(6) The “Bible” for the theory of critical phenomena is the series of 
volumes “Phase Transitions and Critical Phenomena”, C. Domb and M. 
S. Green, Ed., Academic Press, New York, N.Y. 

(7) K. G. Wilson, Phys. Reu. B, 4, 3174 (1971); K. G. Wilson, ibid., 4, 
3184 (1971); K. G. Wilson and J. Kogut, Phys. Rep., 12, 75 (1974). 

(8) Among the most readable accounts of RG theory are S.-K. Ma, 
“Modern Theory of Critical Phenomena”, W. A. Benjamin, Reading, Mass., 
1976, and R. Balescu, “Equilirium and Nonequilibrium Statistical 
Mechanics”, Wiley, New York, N.Y., 1975. 

for liquid-liquid critical points, d = 3 and D = 1, and 
these cases belong to the same universality class. 
Moreover, even a lattice modelgJO for these phase 
transitions will belong to this universality class. 

Second, for all systems in a given universality class, 
the critical exponents are predicted to be the same and, 
with certain mathematical approximations, can actually 
be calculated with the RG theory. The most recent 
such calculations of exponent valuesll are given in the 
second column of Table 11. We note that these values 
are not quite the same as those calculated for the lattice 
models by series expansion techniquedo (third column, 
Table 11). 

Third, RG theory shows (as had earlier phenome- 
nological theories20) that the critical exponents are 
related to one another: 

a = a’ 

Y = Y’ 
v = VI 

2 - a  = y  + 2p 

(9) T. D. Lee and C. N. Yang, Phys. Reu., 87, 410 (1952). 
(10) C. Domb in ref 6, Vol. 3,1974, p 434; W. J. Camp, D. M. Saul, J. 

P. Van Dyke, and M. Wortis, Phys. Reu. B,  14,3990 (1976); P. H. E. Meijer 
and R. A. Farrell, ibid., 12, 243 (1975); M. A. Moore, D. Jasnow, and M. 
Wortis. Phvs. Reu. Lett.. 22. 940 (1969). 

(11)’J. d. Le Guillou and J. ZinnLJustin, Phys. Reu. Lett., 39, 95 (1977). 
See also G. A. Baker, Jr., B. G. Nickel, M. S. Green, and D. I. Meiron, 
36,1351 (1976); G. R. Golner and E. R. Riedel, Phys. Lett. A, 5 8 , l l  (1976); 
L. P. Kadanoff, A. Houghton, and M. C. Yalabik, J.  Stat. Phys., 14,171 
i197R\  j-l. ”,. 

(12) R. Hocken and M. R. Moldover, Phys. Reu. Lett., 37, 29 (1976). 
(13) S. C. Greer and R. Hocken, J .  Chem. Phys., 63, 5067 (1975). 
(14) A. M. Wims, D. McIntyre, and F. Hynne, J.  Chem. Phys., 50,616 

(1969). The data were reanalyzed by J .  Reeder, T.  E. Block, and C. M. 
Knobler, J.  Chem. Therrnodyn., 8 ,  133 (1976). 

(15) R. F. Chang, H. Burstyn, J. V. Sengers, and A. J. Bray, Phys. Reu. 
Lett., 37, 1481 (1976). The errors given in this paper are probably ov- 
erestimated; the authors are preparing a more detailed data analysis. 

(16) G. Morrison and C. M. Knobler, J .  Chern. Phys., 65, 5507 (1976). 
See also H. Klein and D. Woermann, ibid., 62, 2913 (1975). 

(17) S. C. Greer, Phys. Reu., 14,1770 (1976); T. S. Venkataraman and 
L. M. Narducci, J .  Phys. C, 10,2849 (19771, report measurements on the 
same system which are less precise and are in the variable mass fraction. 
The work has been extended to a deuterated mixture in S. C. Greer, Ber. 
Bunsenges. Phys. Chem., 81, 1079 (1977). 

(18) B. Chu, F. J. Schoenes, and W. P. Kao, J .  Am. Chem. SOC., 90, 
3042 (1968). 

(19) B. Chu, S. P. Lee, and W. T. Scharnuter, Phys. Reu. A, 7,353 (1973). 
(20) B. Widom, J. Chem. Phys., 43,3892 (1965); B. Widom, ibid., 43, 

3898 (1965); L. P. Kadanoff, Physics, 2, 263 (1966). 
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(2 - d v  = Y 
d u = 2 - a  

The “primed” numbers refer to temperatures such that 
T < T,  and the “unprimed” to T > T,. Two exponents 
from the set a,  p, and y are sufficient to describe the 
thermodynamic anomalies. The exponents 77 and v 
describe the correlation function; the sixth equality 
given above relates y to TJ and v. The last equation, the 
“hyperscaling” relation,20>21 relates a thermodynamic 
exponent, a correlation function exponent, and the 
spatial dimensionality. 

Fourth, RG theory can be used to calculate the values 
of exponents for correction terms outside the 
“asymptotic” critical region, The universal exponential 
behavior pertains only to an “asymptotic” region (of 
theoretically undetermined size) very near the critical 
point. Beyond that region, correction terms are needed 
to describe the physical behavior. The exponents of 
these terms (but not yet their coefficients) can be 
calculated by RG theory.11i22 

Recent Experimental  Work 
I t  has been the aim in our laboratory in the last few 

years to seek to test these theoretical predictions against 
the critical behavior of binary liquid mixtures. Let us 
first list here the criteria for selecting those experiments 
which will give the most reliable comparison with 
theory. 

First, the measurements should not be susceptible to 
spurious effects due to gravity. I t  has long been 
understood1 that gravity effects are significant a t  the 
liquid-gas critical point. The divergence of the com- 
pressibility of a fluid near the liquid-gas critical point 
results in a variation of fluid density along the height 
of a sample. The inhomogeneity of the sample is, then, 
a major factor in the experimental design and analysis. 
At equilibrium near a liquid-liquid critical point, similar 
density and composition gradients should develop due 
to the divergence of (dxA/dyA)p,T23’24 and have, in fact, 
been r e p ~ r t e d . ~ ~ i ~ ~ @  However, most investigators have 
ignored the gradients in binary liquid mixtures, as- 
suming that the slow diffusion and long equilibrium 
times near a critical point would mean that no sig- 
nificant gradients develop on an experimental time 
scale. 

More recently, it has been learned that significant 
nonequilibrium gradients can develop at  liquid-liquid 
critical points in the time it takes to do an experi- 
ment.26-28 These nonequilibrium gradients are due to 
pressure diffusion or sedimentation in the earth’s 
gravitational field. The method we used for studying 
sedimentation was magnetic d e n ~ i m e t r y , ~ ~  a technique 

(21) A. Hankey and H. E.  Stanley, Phys. Rev.  B ,  6, 3515 (1972). 
(22) F. J. Wegner, Phys. Reo.  B, 5 ,  4529 (1972). 
(23) H. L. Lorentzen and B. B. Hansen, in “Critical Phenomena”, M. 

S. Green and J. V. Sengers, Ed., U.S. National Bureau of Standards 
Miscellaneous Publications No. 273, Washington, D.C., 1966. 

(24) A. A. Fannin, Jr., and C. M. Knobler, Chem. Phys. Lett., 25, 92 
(1974); L. Mistura, J .  Chem. Phys., 55, 2375 (1971). 

(25) M. Giglio and A. Vendramini, Phys. Rev.  Lett., 35, 168 (1975). 
(26) G. Maisano, P. Migliardo, and F. Wanderlingh, Opt.  Commun., 

19, 155 (1976); J .  Phys. A ,  9, 2149 (1976). 
(27) E. Dickinson, C. M. Knobler, V. N. Schumaker, and R. L. Scott, 

Phys. Reu. Lett., 33,180 (1975); T. E. Block, E. Dickinson, C. M. Knobler, 
V. N. Schumaker, and R. L. Scott, J .  Chem. Phys., 66, 3786 (1977). 

(28) S. C. Greer, T. E. Block, and C. M. Knobler, Phys. Rev. Lett., 34, 
250 (1975). 
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Figure 3. The development of density gradients due to sedi- 
mentation in the mixture nitroethane (NE) + 3-methylpentane. 
The vertical axis is the height in a sample with a total height of 
7.6 cm. See text and ref 28. 

which we have found valuable not only for studies of 
gravity effects but also for studying thermal 
expansions13 and coexistence curves17 in these liquid 
mixtures. In this technique, a magnetic buoy is sus- 
pended in the liquid by means of a servocontrolled 
solenoid. The solenoid current required to suspend the 
buoy is a very precise measure of the fluid density. The 
liquid sample can then be moved relative to the buoy 
and density measured as a function of sample height. 
Figure 3 shows are measurements of sedimentation in 
the mixture nitroethane + 3-methylpentane at  an 
average composition which is the critical one and a t  a 
temperature about 0.8 “C above critical.28 The sample 
was stirred until homogeneous, then its mass density 
as a function of height was monitored over 2 weeks. 
The nature of the sedimentation profile can be ex- 
plained by consideration of the flux equation, including 
terms due to a composition gradient and due to a 
pressure gradient.26-28 Such inhomogeneities can 
certainly affect experimental results, as we saw in our 
measurement of the thermal expansion anomaly in 
nitroethane + 3-meth~1pentane.l~ The measurement 
of this anomaly depended upon the sample history and 
ultimately was limited by gravity effects. (In fact, 
difficulties in our thermal expansion measurement led 
us accidentally to a discovery of the sedimentation 
phenomenon!) 

For binary liquid mixtures there is a solution to the 
gravity problem-as much of a solution as one could 
hope for on this earth. Namely, the magnitude of the 
gravity effects (equilibrium and nonequilibrium) can 
be minimized by a judicious choice of the mixture.% We 
can, therefore, choose for examination systems for 
which the gravity effects are smaller than the experi- 
mental resolution. For some techniques (e.g., light 
scattering), the measurement can be made near the 
middle of the sample and over a sufficiently small 
height that gravity effects are negligible. 

The second criterion for experiments is that the data 
extend into the “asymptotic” region. As was mentioned 
above, the critical exponents can be expected to have 
their theoretical values only very close to the critical 
point and the size of the region of limiting behavior can 

(29) D. W. Kupke and J. W. Beams, Methods Enzymol., 26,74 (1973); 
S. C. Greer, M. R. Moldover, and R. Hocken, Reu. Sci. Instrum., 45, 1462 
(1974). 
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be expected to depend upon the variables chosen. So 
far we do not know how to choose the best variables a 
priori, but must depend on trial and error. For coex- 
istence curves, for example, we try to find those vari- 
ables which give the most symmetric curve. For liq- 
uid-liquid critical points we have found17t30,31 that the 
experimental variable which gives the most symmetric 
coexistence curve is the volume fraction30 = VA/(VA + VB), where VA is the volume of component A and VB 
that of component B. We choose volume fraction, 
therefore, because any other order parameter for a 
liquid-liquid coexistence curve produces a less sym- 
metric coexistence curve, exponents which do not have 
the limiting values, and a need for more terms to fit the 
data satisfactorily. 

Before we consider the experimental results for liquid 
mixtures, let us briefly mention the experimental ev- 
idence on liquid-gas critical points. Most data within 
0.01-10 “ C  of pure fluid critical points have yielded 
exponents distinctly different from the theoretical 
values, either by series or RG  calculation^.^^ For 
example, the usual value obtained for 0 has been 0.35. 
More recent work has revealed that the typical mea- 
surements are outside the “asymptotic” region, that 
when the data are within E < the RG values are 
indeed obtained. This work was pioneered by L. R. 
Wilcox and his  collaborator^^^ with an interferometric 
technique which uses the density gradient due to 
gravity as a measure of the fluid equation-of-state. This 
technique, which takes advantage of the gravity effect, 
combined with remarkably fine temperature control, 
has resulted in the exponents shown12 in the fourth 
column of Table 11. We can see that these experiments 
are in quite good agreement with the theory, especially 
with the RG theory. Thus for liquid-gas critical points, 
while the series values and the “older” experiments were 
in clear disagreement, the RG values and the newest 
experiments agree quite nicely. 

The experimental investigation of liquid-liquid 
critical phenomena is in some ways simpler than that 
of liquid-gas critical phenomena. First, as was de- 
scribed above, gravity effects can be minimized. 
Second, the phase transitions can be studied at  near 
room temperature and at  atmospheric or vapor pres- 
sure. Third, we have some evidence that the range of 
“asymptotic” critical behavior is somewhat larger in 
temperature (E < lo-’) for liquid-liquid critical points 
than for liquid-gas critical points.17 

Two binary mixtures-nitroethane + 3-methyl- 
pentane and isobutyric acid + water-have been 
studied extensively enough that several exponents have 
been independently determined. The exponent values 
for these systems are given in the last two columns of 
Table 11. These are the data which best satisfy our 
criteria with respect to gravity effects and choice of 
variables and which, in addition, have sufficient pre- 
cision to make their comparison with theory mean- 

(30) J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott, “Regular and 
Related Solutions”, Van Nostrand Reinhold, New York, N.Y., 1970, pp 
169-172, and references therein. 

(31) A. Stein and G. F. Allen, J .  Phys. Chem. Ref. Data, 2,443 (1974). 
(32) J. M. H. Levelt Sengers, Physica, 73,73 (1974); J. M. H. Levelt 

Sengers, W. L. Greer, and J. V. Sengers, J.  Phys. Chem. Ref. Data, 5, 1 
(1976); J. M. H. Levelt Sengers and J. V. Sengers, Phys. Reu. A ,  12, 2622 
(1975). 

(33) L. R. Wilcox and D. Balzarini, J .  Chem. Phys., 48,753 (1968); W. 
T. Estler, R. Hocken, T. Charlton, and L. R. Wilcox, Phys. Reu. A ,  12, 
2118 (1975). 
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Figure 4. Coexistence curve of isobutyric acid + water: coexisting 
mass densities (A, A), average densities of coexisting phases 
(“diameter” of the coexistence curve) (o), and densities in the 
one-phase region (0). The diameter and the densities in the 
one-phase region would coincide at the critical point if the sample 
were precisely a t  the critical composition. See ref 17. 

ingful. Let us consider each of these exponent deter- 
minations. 

The determination of the exponent a has always been 
difficult because the heat capacity is hard to m e a s ~ r e . ~ , ~  
The most successful measures of a-those given in 
Table 11-were made by measuring instead the thermal 
expansion, by magnetic densimetry13 and by dilato- 
metry.16 The values for a agree within error with both 
series and RG calculations. 

The exponent p is the best determined exponent for 
binary mixtures in that it has been measured with 
precision for several mixtures by several methods. Both 
values given in Table I1 were obtained from magnetic 
densimeter measurements of coexisting mass densities 
which were then converted to volume fractions. Figure 
4 shows our data on the coexistence curve of isobutyric 
acid + water. The coexistence curve can also be de- 
termined by visual observation of the transition tem- 
peratures of a number of mixture samples of different 
corn position^^^ or by optical techniques in which the 
refractive index serves as a measure of volume frac- 
tion.36i37 Several reliable p determinations are available 
other than the two in Table 11: carbon disulfide + 
n i t r ~ e t h a n e l ~ p ~ ~  0.316 f 0.008; aniline + c y ~ l o h e x a n e ~ ~  
0.328 f 0.007; methanol + cy~lohexane~~ 0.326 f 0.003. 
Altogether, the p determinations for binary liquid 
mixtures agree well with the RG calculations and do not 
agree with the series calculation. 

The exponents y ,  Y, and 7 are obtained from mea- 
surements of the intensity of radiation (usually light) 

(34) P. Calmettes and C. Laj (Phys. Rev. Lett., 36, 1372 (1976)) de- 
termined CY from the relaxation time of entropy fluctuations in nitroethane 
+ 3-methylpentane to be 0.059 f 0.006. This value is low compared to 
other experiments and to the theory. The exponent was determined in 
a fit of a two-term exponential with both exponents free, whereas a better 
technique would have been to fix the other exponent (see F. S. Acton, 
“Numerical Methods That Work”, Harper and Row, New York, N.Y., 1970, 
p 253). 

(35) E. S. R. Gopal, R. Ramachandra, and P. Chandra Sekhan, Pramam, 
1, 260 (1973); E. S. R. Gopal, R. Ramachandra, P Chandra Sekhan, K. 
Govindarajun, and S. V. Subramanyam, Phys. Reu. Lett., 32,284 (1974); 
E. S. R. Gopal, P. Chandra Sekhar, G. Ananthakrishna, R. Ramachandra, 
and S. V. Subramanyam, Proc. R. Soc. London, Ser.  A.,  350,91 (1976). 

(36) D. A. Balzarini, Can. J.  Chem., 52, 499 (1974). 
(37) D. T. Jacobs, D. J. Anthony, R. C. Mockler, and W. J. OSullivan, 
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Chem. Phys., 20, 219 (1977). 
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scattered by composition fluctuations near the critical 
p ~ i n t . ~ , ~  Many such measurements have been made on 
liquid  mixture^;^ we choose to include in Table I1 only 
some which meet our selection criteria with regard to 
precision and to the absence of, or correction for, gravity 
effects. One other notable measurement, in addition 
to those in Table 11, is: nitrobenzene + n-hexane3* v 
= 0.630 f 0,005, y = 1.228 f 0.006. The exponent 7 is 
the one for which we have the least experimental in- 
formation, even for pure Because it is so small, 
its determination is difficult. We see from Table 11 that 
the evidence on y, v, and 7 is consistent with the 
theoretical values and is somewhat closer to the RG 
values than to the series values. 

In summary, Table I1 shows that pure fluid liquid-gas 
critical points and binary mixture liquid-liquid critical 
points have the exponents predicted by the renor- 
malization group theory. We can also see that, where 
we have independent measurements of exponents, the 
exponent values are consistent within probable error 
with the scaling relations predicted to hold between 
them. 

Having confirmed the validity of the RG theory in 
the “asymptotic” critical region, we can consider the 
extension of the analysis to a region further from the 
critical point. WegnerZ2 has worked out an asymptotic 
series expansion for critical behavior, and Ley-Coo and 
Green40 have translated Wegner’s expansion into the 
terminology of fluids. Ley-Coo and Green tested this 
expansion on the coexistence curve data of SF6,41 and 
the expansion has been successfully applied to the 
equation of state of H20.42 The only liquid-liquid data 
set for which there is sufficient range and precision to 
test the Wegner expansion is that of Gopal et al. on the 
coexistence curve of carbon disulfide + n i t r ~ m e t h a n e , ~ ~  
which extends 60 “C from T,. We17 have fitted Gopal’s 
data to Wegner’s series. When terms with similar 
exponents are collected, the Wegner expansion for a 
coexistence curve can be written: 

Here Ap is the difference in order parameter between 

(38) C. C. Lai and S. H. Chen, Phys. Rev. Lett.,  29,401 (1972); Phys. 
Lett .  A ,  41, 259 (1972). Gravity effects would be a problem for this 
experiment if measurements were not made a t  the center of the cell, as 
probably they were. 

(39) V. P. Warkulwiz, B. Mozer, and M. S. Green, Phys. Reu. Lett., 32, 
1410 (1974); B. Mozer, Bull. Am. Phys. SOC., 20, 50 (1975); H. D. Bale, 
J. S. Lin, D. A. Dolejsi, J. L. Casteel, D. A. Pringle, and P. U’. Schmidt, 
Phys. Rev. A ,  15, 2513 (1977). 

(40) M. Ley-Coo and M. S. Green, Phys. Reo. A .  16.2483 (1977): Ph.D. 
Thesis. M. Lev-Coo. T e m d e  Universitv. 1977. 

(41) J. W e i k r ,  K. H. Langley, and N: C. Ford, Jr., Phys. Reu. Lett., 
32,879 (1974); Ph.D. Thesis, J. Weiner, University of Massachusetts, 1973. 

(42) F. W. Balfour, J. V. Sengers, M. R. Moldover, and J. M. H. Levelt 
Sengers, 7th Symposium on Thermophysical Properties, National Bureau 
of Standards, May 10-12, 1977; Phys. Lett. A ,  65, 223 (1978). 

Table XXI 
Parameters to Fits to the Wegner Expansion for  the 
Coexistence Curves of SF, and Carbon Disulfide -t. 

Nitroethane a 

carbon disulfide + 
SF,b nitromethanee 

range e i 0.002 e 0.2 
P 0.327 t 0.009 0.316 t 0.008 
Bo 1.72 + 0.06 1.63 i. 0.09 
B ,  0.48 -f 0.12 0.47 i 0.19 
BZ -0.84 t 0.12 -1.5 i. 0.3 

aTheexpans ionis :  Ap/2p,=B0eP[1 + B l e A i  + 
B z e z A l  + ...I, where A 1  = 0.50. Errors are given as 30. 

Ley-Coo and Green, ref 40. Greer, ref 17 .  

coexisting phases (mass density for a liquid-gas critical 
point and volume fraction for a liquid-liquid critical 
point), pc is the critical value of the order parameter, 
and Al is a correction exponent, the value of which is 
very close to 0.5.’l For A, = 0.5, p and the remaining 
coefficients can be found by a least-squares analysis. 
The results for SFG and for carbon disulfide + nitro- 
methane are given in Table 111. The data for both 
systems can be fitted within their uncertainty to the 
Wegner expansion and the values obtained for /3 are 
consistent with RG theory. 

Conclusions 
We conclude that the experimental data on liquid- 

liquid critical points confirm the renormalization group 
theory and support the assumption that, very close to 
a critical point, the behavior is determined by the 
long-range nature of the correlation length. Further- 
more, the experimental evidence is consistent with the 
theoretical predictions for extensions beyond the 
“asymptotic” region. 

Several questions remain unresolved. We need a 
better understanding of the size of the region of Is- 
ing-like behavior in real fluids. We require both the- 
oretical attacks on the calculation of this regime and 
careful consideration of the experimental evidence, 
especially as to differences between liquid-gas and 
liquid-liquid critical regions. We have no logical ap- 
proach to the choice of liquid-liquid order parameter. 
There is already considerable interest in developing 
better expansions for analyzing the behavior over a 
broad range.43 We can also expect further work to 
resolve the discrepancies between series and RG cal- 
culations of exponent values. 

It seems that we now know a great deal about what 
is alike for various critical points and we are beginning 
to focus on what is different about various critical 
points. This is evidence of the maturation that has 
occurred in the field of critical phenomena. 

(43) T. 3. Chang, C. W. Garland, and 3. Thoen, Phyg. Rev. A ,  16,446 
(1977). 


